Svar:
Område =
Forklaring:
De to sirklene må passe akkurat innenfor rektangelet (innskrevet).
Bredden av rektangelet er den samme som hver enkelt diameter
sirkel, mens lengden er den samme som to diametre.
Men som vi blir bedt om området, er det mer fornuftig å bruke radiene.
areal =
Område med en sirkel
Område =
Område =
Lengden på et rektangel overstiger bredden ved 4 cm. Hvis lengden økes med 3 cm og bredden økes med 2 cm, overstiger det nye området det opprinnelige området med 79 kvm. Hvordan finner du dimensjonene til det gitte rektangelet?
13 cm og 17 cm x og x + 4 er de opprinnelige målene. x + 2 og x + 7 er de nye dimensjonene x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 14 79 = 5x + 14 65 = 5x x = 13
Bredden og lengden på et rektangel er påfølgende like heltall. Hvis bredden er redusert med 3 tommer. da er området av det resulterende rektangel 24 kvadrattommer. Hva er området for det opprinnelige rektangel?
48 "square inches" "la bredden" = n "deretter lengden" = n + 2 n "og" n + 2color (blå) "er påfølgende like heltall" "bredden reduseres med" 3 "tommer" rArr "bredde "n-3" -området "=" lengde "xx" bredde "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = Olarrcolor "i standard form" "faktorene til - 30 hvilken sum til - 1 er + 5 og - 6" rArr (n-6) (n + 5) = 0 "ekvate hver faktor til null og løse for n" n-6 = 0rArrn = 6 n + 5 = 0rArrn = -5 n> 0rArrn =
Vi har en sirkel med et innskrevet firkant med en innskrevet sirkel med en innskrevet like-sidet trekant. Diameteren til den ytre sirkelen er 8 fot. Triangelmaterialet koster $ 104,95 per kvadratmeter. Hva koster det trekantede senteret?
Kostnaden for et trekantet senter er $ 1090,67 AC = 8 som en gitt diameter på en sirkel. Derfor, fra Pythagoras teorem til høyre isosceles trekant Delta ABC, AB = 8 / sqrt (2) Da, siden GE = 1/2 AB, GE = 4 / sqrt (2) Åpenbart er trekant Delta GHI ensidig. Punkt E er et senter av en sirkel som omkranser Delta GHI, og som sådan er et skjæringspunkt mellom medianer, høyder og vinkel bisektorer av denne trekanten. Det er kjent at et skjæringspunkt mellom medianer deler disse medianene i forholdet 2: 1 (for bevis se Unizor og følg linkene Geometri - Parallelllinjer - Mini-teoremer 2 - Teo