Mayumi bygger en linje gjennom punkt P som er vinkelrett på RS . Hun legger kompasset på punkt P for å bygge en bue. Hva må være sant om bredden på kompassåpningen når Mayumi trekker buen?
Bredden på kompasset skal være mer enn minimumsavstanden mellom P og stang (RS), slik at den kutter stangen (RS) på to forskjellige punkter.
En linje går gjennom (8, 1) og (6, 4). En annen linje går gjennom (3, 5). Hva er et annet poeng at den andre linjen kan passere gjennom hvis den er parallell med første linjen?
(1,7) Så må vi først finne retningsvektoren mellom (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi vet at en vektorkvasjon består av en posisjonsvektor og en retningsvektor. Vi vet at (3,5) er en posisjon på vektorkvasjonen, slik at vi kan bruke det som vår posisjonvektor og vi vet at det er parallell den andre linjen, slik at vi kan bruke den retningsvektoren (x, y) = (3, 4) + s (-2,3) For å finne et annet punkt på linjen kan du bare erstatte et tall i s bortsett fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er et annet punkt.
En linje går gjennom (4, 3) og (2, 5). En andre linje går gjennom (5, 6). Hva er et annet poeng at den andre linjen kan passere gjennom hvis den er parallell med første linjen?
(3,8) Så må vi først finne retningsvektoren mellom (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi vet at en vektorkvasjon består av en posisjonsvektor og en retningsvektor. Vi vet at (5,6) er en posisjon på vektor-ligningen, slik at vi kan bruke det som vår positionsvektor, og vi vet at den er parallell den andre linjen, slik at vi kan bruke den retningsvektoren (x, y) = (5, 6) + s (-2,2) For å finne et annet punkt på linjen kan du bare erstatte et tall i s bortsett fra 0 slik at vi kan velge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et annet punkt.