Svar:
Forklaring:
Den første termen,
Svar:
Femtende siktets faktorisering vil inneholde 14 fours.
Forklaring:
Den angitte sekvens er geometrisk, idet det fellesforhold er 4 og den første termen er 3.
Merk at den første termen har 0 faktorer på fire. Den andre termen har en faktor på fire, som den er
Kan du se et mønster her? De
Det er også en annen grunn til dette. Den nte termen av en G.P er
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
De første tre begrepene med 4 heltall er i aritmetiske P.and de tre siste begrepene er i Geometric.P.How å finne disse 4 tallene? Gitt (1. + siste sikt = 37) og (summen av de to heltallene i midten er 36)
"Reqd. Integrallene er," 12, 16, 20, 25. La oss kalle vilkårene t_1, t_2, t_3 og t_4, hvor, t_i i ZZ, i = 1-4. Forutsatt at uttrykkene t_2, t_3, t_4 danner en GP, tar vi, t_2 = a / r, t_3 = a, og, t_4 = ar, hvor, ane0. Også gitt det, t_1, t_2 og t_3 er i AP har vi, 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Således har vi, Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, og, t_4 = ar. Med det som er gitt, t_2 + t_3 = 36rArra / r + a = 36, dvs. en (1 + r) = 36r ....................... .................................... (ast_1). Videre t_1 + t_4 = 37, ....... "[Gitt]" rArr (2a) / r-a
Hva er progresjonen av antall spørsmål for å nå et annet nivå? Det ser ut til at antall spørsmål går opp raskt som nivået øker. Hvor mange spørsmål for nivå 1? Hvor mange spørsmål for nivå 2 Hvor mange spørsmål for nivå 3 ......
Vel, hvis du ser på FAQ, finner du at trenden for de første 10 nivåene er gitt: Jeg antar at hvis du virkelig vil forutsi høyere nivåer, passer jeg antall karma poeng i et emne til det nivået du nådde , og fikk: hvor x er nivået i et gitt emne. På samme side, hvis vi antar at du bare skriver svar, så får du bb (+50) karma for hvert svar du skriver. Nå, hvis vi regraferer dette som antall svar skrevet mot nivået, så: Husk at dette er empiriske data, så jeg sier ikke dette er faktisk hvordan det er. Men jeg synes det er en god tilnærming. Videre