Triangle A har et område på 6 og to sider med lengder 8 og 12. Trekant B er lik trekant A og har en side med en lengde på 9. Hva er de maksimale og minste mulige områdene av trekanten B?

Triangle A har et område på 6 og to sider med lengder 8 og 12. Trekant B er lik trekant A og har en side med en lengde på 9. Hva er de maksimale og minste mulige områdene av trekanten B?
Anonim

Svar:

Maksimumsareal 7.5938 og minimumsareal 3.375

Forklaring:

#Delta s A og B # er like.

For å få maksimalt område på # Del B #, side 9 av # Del B # skal svare til side 8 av # Del A #.

Sidene er i forholdet 9: 8

Dermed vil områdene være i forholdet mellom #9^2: 8^2 = 81: 64#

Maksimalt område av trekant #B = (6 * 81) / 64 = 7.5938 #

På samme måte som å få det minste området, side 12 av # Del A # vil svare til side 9 av # Del B #.

Sidene er i forholdet # 9: 12# og områder #81: 144#

Minimumsareal av # Del B = (6 * 81) / 144 = 3,375 #