Svar:
Forklaring:
la
Grensene er endret til
Som vi kjenner til
derfor,
Hvordan finner du det definitive integralet av int (1-2x-3x ^ 2) dx fra [0,2]?
Int_0 ^ 2 (1-2x-3x ^ 2) dx = -10 int_0 ^ 2 (1-2x-3x ^ 2) dx = | x-2 * 1/2 * x ^ 2-3 * 1/3 * x ^ 3 | _0 ^ 2 int_0 ^ 2 (1-2x-3x ^ 2) dx = | xx ^ 2-x ^ 3 | _0 ^ 2 int_0 ^ 2 (1-2x-3x ^ 2) dx = 2-2 ^ 2-2 ^ 3 int_0 ^ 2 (1-2x-3x ^ 2) dx = 2-4-8 int_0 ^ 2 (1-2x-3x ^ 2) dx int_0 ^ 2 (1-2x-3x ^ 2) dx = -10
Hvordan vurderer du den definerte integral int ((sqrtx + 1) / (4sqrtx)) ^ 2 dx fra [3,9]?
Int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx = 9/8-sqrt3 / 4 + 1/16 * ln 3 = 0,7606505661495 Fra gitt, int_3 ^ 9 ((sqrtx + 1) / 4sqrtx)) ^ 2 * dx Vi begynner med å forenkle først integandet int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx int_3 ^ 9 ((sqrtx) / (4sqrtx) + 1 / (4sqrtx)) ^ 2 * dx int_3 ^ 9 (1/4 + 1 / (4sqrtx)) ^ 2 * dx int_3 ^ 9 (1/4) ^ 2 * (1 + 1 / (sqrtx)) ^ 2 dx int_3 ^ 9 1/16) * (1 + 2 / (sqrtx) + 1 / x) dx (1/16) * int_3 ^ 9 (1 + 2 * x ^ (- 1/2) + 1 / x) dx 16) * [x + (2 * x ^ (1/2)) / (1/2) + ln x] _3 ^ 9 (1/16) * [x + 4 * x ^ (1/2) + ln x ] (3 + 4 * 3 ^ (1/2) + ln 3)] (1/16) * (3 + 4 * 9 ^ (1/2) + l
Hvordan vurderer du den bestemte integral int sek ^ 2x / (1 + tan ^ 2x) fra [0, pi / 4]?
Pi / 4 Legg merke til at fra den andre pythagoranske identiteten som 1 + tan ^ 2x = sec ^ 2x Dette betyr at brøkdelen er lik 1 og dette etterlater oss det ganske enkle integralet av int_0 ^ (pi / 4) dx = x | _0 ^ (pi / 4) = pi / 4