Svar:
Den første:
Den andre:
Forklaring:
La oss først skrive de geometriske sekvensene i en ligning der vi kan koble dem inn:
Den første er
Første:
Vi vet allerede at første sikt er
Den andre:
Du kan også bare multiplisere første semester (
Den første med en første periode på
Den andre med en første periode på
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
Den første termen i en geometrisk sekvens er 200 og summen av de første fire begrepene er 324,8. Hvordan finner du fellesforholdet?
Summen av en geometrisk sekvens er: s = a (1-r ^ n) / (1-r) s = sum, a = innledende term, r = fellesforhold, n = termenummer ... Vi får s, a og n, så ... 324,8 = 200 (1-r ^ 4) / (1-r) 1,624 = (1-r4) / (1-r) 1,624-1,624r = 1-r4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r +624) / (4r ^ 3-1.624) (3r ^ 4-624) / (4r ^ 3-1.624) vi får .. .5, .388, .399, .39999999, .3999999999999999 Så grensen vil være .4 eller 4/10 Således er ditt fellesforhold 4/10 sjekk ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324.8
Skriv de fire første begrepene i hver geometriske sekvens a1 = 6 og r = 1/2?
Se nedenfor Her er min regel: a_n = 6 (1/2) ^ (n-1) a_1 = 6 (1/2) ^ (1-1) = 6 a_2 = 6 (1/2) ^ (2-1) = 3 a_3 = 6 (1/2) ^ (3-1) = 3/2 a_4 = 6 (1/2) ^ (4-1) = 3/4