Summen av en geometrisk sekvens er:
s =
s = sum, a = innledende term, r = fellesforhold, n = termenummer …
Vi får s, a og n, så …
Så grensen vil være
kryss av…
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
Den andre termen i en geometrisk sekvens er 12. Den fjerde termen i samme rekkefølge er 413. Hva er fellesforholdet i denne sekvensen?
Fellesratio r = sqrt (413/12) Andre sikt ar = 12 Fjerde sikt ar ^ 3 = 413 Fellesratio r = {ar ^ 3} / {ar} r = sqrt (413/12)
Summen av fire påfølgende ord i en geometrisk sekvens er 30. Hvis AM av første og siste term er 9. Finn fellesforholdet.?
La første sikt og felles forhold av GP er henholdsvis a og r. Ved første betingelse a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Ved annen betingelse a + ar ^ 3 = 2 * 9 .... (2) Subtrahering (2) fra (1) ar + 3 ^ 2 = 12 .... (3) Deling (2) med (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Så r = 2or1 / 2