
Svar:
Samme som
Forklaring:
graf {(x ^ 2 + 4x -12) / (x + 6) -10, 10, -10, 10}
Åpenbart er funksjonen udefinert på
I alle andre tilfeller kan vi gjøre en enkel transformasjon:
Siden
for alle
Derfor ville grafen vår være identisk med den ene av
Grafen av funksjonen f (x) = (x + 2) (x + 6) er vist nedenfor. Hvilken uttalelse om funksjonen er sant? Funksjonen er positiv for alle reelle verdier av x hvor x> -4. Funksjonen er negativ for alle reelle verdier av x hvor -6 <x <-2.

Funksjonen er negativ for alle reelle verdier av x hvor -6 <x <-2.
Hvilke egenskaper er grafen til funksjonen f (x) = (x + 1) ^ 2 + 2? Kryss av alt som gjelder. Domenet er alle ekte tall. Området er alle ekte tall større enn eller lik 1. Y-avgrensningen er 3. Grafen for funksjonen er 1 enhet opp og

Første og tredje er sanne, andre er falsk, fjerde er uferdig. - Domenet er faktisk alle ekte tall. Du kan omskrive denne funksjonen som x ^ 2 + 2x + 3, som er et polynom, og som sådan har domenet mathbb {R} Rekkevidden er ikke alle ekte tall større enn eller lik 1, fordi minimum er 2. I faktum. (x + 1) ^ 2 er en horisontal oversettelse (en enhet igjen) av "strandard" parabola x ^ 2, som har rekkevidde [0, infty). Når du legger til 2, skifter du grafen vertikalt med to enheter, så rekkevidden er [2, infty) For å beregne y-avskjæringen, plugg bare x = 0 i ligningen: du har y = 1 ^
Skiss grafen for y = 8 ^ x som angir koordinatene til noen punkter hvor grafen krysser koordinataksene. Beskriv fullstendig transformasjonen som forvandler grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?

Se nedenfor. Eksponentielle funksjoner uten vertikal transformasjon krysse aldri x-aksen. Som sådan vil y = 8 ^ x ikke ha x-avskjæringer. Det vil ha en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal likne følgende. grafen for y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhet til venstre slik at det er y- avskjære ligger nå på (0, 8). Også du vil se at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåpentligvis hjelper dette!