Svar:
Forklaring:
Ligningen i en linje i
#color (blå) "skrå-avskjæringsform" # # er.
#COLOR (red) (bar (ul (| farge (hvit) (2/2) farge (sort) (y = mx + b) farge (hvit) (2/2) |))) # hvor m representerer skråningen og b, y-avskjæringen
Vi må finne m og b for å etablere ligningen.
For å finne m, bruk
#color (blå) "gradient formel" #
#COLOR (red) (bar (ul (| farge (hvit) (2/2) farge (sort) (m = (y_2-y_1) / (x_2-x_1)) farge (hvit) (2/2) |))) # hvor
# (x-1, y_1) "og" (x_2, y_2) "er 2 koordinatpunkter" # De 2 poengene her er (2, 4) og (4, 0)
la
# (x_1, y_1) = (2,4) "og" (x_2, y_2) = (4,0) #
# RArrm = (0-4) / (4-2) = (- 4) / 2 = -2 # Vi kan skrive delvis likning som
# Y = -2x + b # For å finne b, erstatt noen av de 2 punktene i delvis likning og løse for b.
Ved å bruke (4, 0), er x = 4 og y = 0
# RArr0 = (- 2xx4) + brArr0 = -8 + brArrb = 8 #
# rArry = -2x + 8 "er ligningen" #
Svar:
Forklaring:
Hvis to koordinater er kjent, er en mer direkte formel;
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (5,3) og (8,8) midtpunktet på de to punktene?
Linjens likning er 5 * y + 3 * x = 47 Koordinatene til midtpunktet er [(8 + 5) / 2, (8 + 3) / 2] eller (13 / 2,11 / 2); Hellingen m1 av linjen som går gjennom (5,3) og (8,8) er (8-3) / (8-5) eller5 / 3; Vi vet at kondisjonen av vinkelretthet av to linjer er som m1 * m2 = -1 hvor m1 og m2 er bakkene til de vinkelrette linjene. Så linjens helling blir (-1 / (5/3)) eller -3/5 Nå er ligningens linje som går gjennom midtpunktet (13 / 2,11 / 2) y-11/2 = -3/5 (x-13/2) eller y = -3 / 5 * x + 39/10 + 11/2 eller y + 3/5 * x = 47/5 eller 5 * y + 3 * x = 47 [Svar]
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (-8,10) og (-5,12) midtpunktet på de to punktene?
Se en løsningsprosess under: Først må vi finne midtpunktet for de to punktene i problemet. Formelen for å finne midtpunktet til et linjesegment gi de to sluttpunktene: M = ((farge (rød) (x_1) + farge (blå) (x_2)) / 2, (farge (rød) (y_1) + farge (blå) (y_2)) / 2) M er midtpunktet og de oppgitte punktene er: (farge (rød) (x_1), farge (rød) (y_1)) og (farge (blå) (x_2) farge (blå) (- 5)) / 2, (farge (rød) (10) + farge (blå) (farge (rød) 12)) / 2) M = (-13/2, 22/2) M = (-6,5, 11) Deretter må vi finne bakken på linjen som inneholder de to punkt
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (-5,3) og (-2,9) midtpunktet på de to punktene?
Y = -1 / 2x + 17/4> "vi trenger å finne hellingen m og midtpunktet på linjen" "som går gjennom de givne koordinatpoengene" "for å finne m bruk" farge (blå) "gradientformel" farge (hvit) (x) m = (y_2-y_1) / (x_2-x_1) "la" (x_1, y_1) = (- 5,3) "og" (x_2, y_2) = (- 2,9) rArrm = (9-3) / (- 2 - (- 5)) = 6/3 = 2 "Hellingen av en linje vinkelrett på dette er" • farge (hvit) (x) m_ (farge (rød) "vinkelrett ") = - 1 / m = -1 / 2" midtpunktet er gjennomsnittet av koordinatene for "" poengene "rArr