Svar:
vertikal asymptote x = -1
horisontal asymptote y = -3
Forklaring:
Vertikal asymptote kan bli funnet når nevneren av
Den rasjonelle funksjonen er null.
her: x + 1 = 0 gir x = - 1
Horisontal asymptote kan bli funnet når graden av
teller og graden av nevner er like.
her er graden av teller og nevner begge 1.
For å finne ligningen, ta forholdet mellom ledende koeffisienter.
dermed y =
# 3/1 # dvs. y = 3
graf {(3x-2) / (x + 1) -20, 20, -10, 10}
Hva er asymptotene og flyttbare diskontinuiteter, hvis noen, av f (x) = (1 - 4x ^ 2) / (1 - 2x)?
Funksjonen vil være diskontinuerlig når nevneren er null, som oppstår når x = 1/2 As | x | blir veldig stort uttrykket har en tendens til + -2x. Det er derfor ingen asymptoter da uttrykket ikke teller mot en bestemt verdi. Uttrykket kan forenkles ved å merke at telleren er et eksempel på forskjellen på to firkanter. Da f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) Faktoren (1-2x) avbryter og uttrykket blir f (x) = 2x + 1 som er ligning av en rett linje. Diskontinuiteten er fjernet.
Hva er asymptotene og flyttbare diskontinuiteter, hvis noen, av f (x) = (1-5x) / (1 + 2x)?
"vertikal asymptote ved" x = 1/2 "horisontal asymptote på" y = -5 / 2 Nivån til f (x) kan ikke være null, da dette ville gjøre f (x) udefinert. Å ligne nevnen til null og løse gir verdien som x ikke kan være, og hvis telleren ikke er null for denne verdien, så er det en vertikal asymptote. "Løs" 1 + 2x = 0rArrx = -1 / 2 "er asymptoten" "horisontale asymptoter opptre som" lim_ (xto + -oo), f (x) toc "(en konstant)" "dividere vilkår på teller / nevner ved x (x / x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) =
Hva er asymptotene og flyttbare diskontinuiteter, hvis noen, av f (x) = 1 / (8x + 5) -x?
Asymptote ved x = -5 / 8 Ingen flyttbare diskontinuiteter Du kan ikke avbryte noen faktorer i nevneren med faktorer i telleren, så det er ingen flyttbare diskontinuiteter (hull). For å løse for asymptotene settes telleren til 0: 8x + 5 = 0 8x = -5 x = -5 / 8 graf {1 / (8x + 5) -x [-10, 10, -5, 5]}