Svar:
Forklaring:
Parabola er banen sporet av et punkt slik at det er avstand fra et gitt punkt kalt fokus og en gitt linje kalt directrix er alltid like.
La poenget på parabolen være
Det er avstand fra fokus
Derfor ligningens parabola med fokus på
eller
eller
eller
eller
grafer {(10y + x ^ 2 + 10x + 80) (y + 3) (x + 5) ^ 2 + (y + 8) ^ 2-0.1) = 0 -15, 5, -10, 0 }
Hva er parabolas likning med fokus på (-15, -19) og en regi av y = -8?
Y = -1/22 (x +15) ^ 2- 27/2 Fordi direktoren er en horisontal linje, vet vi at parabolen er vertikalt orientert (åpner enten opp eller ned). Fordi y-koordinaten av fokuset (-19) under directrixen (-8), vet vi at parabolen åpner seg. Vertexformen til ligningen for denne typen parabol er: y = 1 / (4f) (x - h) ^ 2 + k "[1]" Hvor h er x-koordinatet til toppunktet, k det y koordinert av toppunktet og fokuspunktet f er halvparten av den signerte avstanden fra directrix til fokuset: f = (y _ ("fokus") - y _ ("directrix")) / 2 f = (-19 - -8 ) / 2 f = -11/2 Y-koordinatet til vertexet, k, er f
Hva er parabolas likning med fokus på (2,1) og en regi av y = 3?
X ^ 2-4x + 4y-4 = 0 "for hvilket som helst punkt" (x, y) "på parabolen" "avstanden fra" (x, y) "til fokus og directrix er" "like" "ved hjelp av "farge (blå)" avstandsformel "rArrsqrt ((x-2) ^ 2 + (y-1) ^ 2) = | y-3 | farge (blå) "kvadrer begge sider" (x-2) ^ 2 + (y-1) ^ 2 = (y-3) ^ 2 rArrx ^ 2-4x + 4 + y ^ 2y + 1 = y ^ 2-6y + 9 rArrx ^ 2-4xcancel (+ y ^ 2) avbryte (-y ^ 2) -2y + 6y + 4 + 1-9 = 0 rArrx ^ 2-4x + 4y-4 = Olarrcolor (rød) " er ligningen "
Hva er parabolas likning med fokus på (3,6) og en regi av y = 0?
Vertexformen til ligningen for parabolen er: y = 1/12 (x-3) ^ 2 + 3 Direktivet er en horisontal linje, derfor er vertexformen til ligningens ligning: y = a (xh ) ^ 2 + k "[1]" Hjertets x-koordinat, h, er det samme som x-koordinatet til fokuset: h = 3 Y-koordinatet til vertexet, k, er midtpunktet mellom styret og fokuset : k = (6 + 0) / 2 = 3 Den signerte vertikale avstanden, f, fra vertexet til fokuset er også 3: f = 6-3 = 3 Finn verdien av "a" ved hjelp av formelen: a = 1 / (4f) a = 1 / (4 (3)) a = 1/12 Erstatt verdiene for h, k og a i ligning [1]: y = 1/12 (x-3) ^ 2 + 3 "[2]"