Svar:
Forklaring:
# "merk at sammenhengende odde tall har en forskjell på" #
# "2 mellom dem" #
# "la de 2 tallene være" n "og" n + 2 #
# rArrn + n + 2 = -108larrcolor (blå) "summen av tallene" #
# RArr2n + 2 = -108 #
# "trekker" 2 "fra begge sider" #
# RArr2n = -110rArrn = -55 #
# "og" n + 2 = -55 + 2 = -53 #
# "de 2 tallene er" -55 "og" -53 #
Produktet av to påfølgende ulige heltall er 29 mindre enn 8 ganger summen deres. Finn de to heltallene. Svar i form av parrede punkter med det laveste av de to heltallene først?
(13, 15) eller (1, 3) La x og x + 2 være merkelige sammenhengende tall, så Som i spørsmålet har vi (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2-x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 eller 1 Nå, tilfelle I: x = 13:. x + 2 = 13 + 2 = 15:. Tallene er (13, 15). SAK II: x = 1:. x + 2 = 1 + 2 = 3:. Tallene er (1, 3). Derfor, som det er to tilfeller dannet her; paret kan være både (13, 15) eller (1, 3).
Summen av fire påfølgende ulige heltall er tre mer enn 5 ganger minst av heltallene, hva er heltallene?
N -> {9,11,13,15} farge (blå) ("Bygg likningene") La det første merkelige uttrykket være n La summen av alle betingelsene være s Da blir termen 1-> n termen 2-> n +2 term 3-> n + 4 term 4-> n + 6 deretter s = 4n + 12 ............................ ..... (1) Gitt at s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equating (1) to (2) variabel s 4n + 12 = s = 3 + 5n Samle lignende vilkår 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ Begrepet er således: term 1-> n-> 9 term 2-> n + 2-> 11 term 3-> n + 4-> 13 term
Vennligst hjelp meg med følgende spørsmål: ƒ (x) = x ^ 2 + 3x + 16 Finn: ƒ (x + h) Hvordan? Vennligst vis alle trinnene så jeg forstår bedre! Vennligst hjelp!
F (x) = x ^ 2 + x (2h + 3) + h (h + 3) +16> "erstatning" x = x + h "til" f (x) f )) = (farge (rød) (x + h)) ^ 2 + 3 (farge (rød) (x + h)) + 16 "distribuere faktorene" = x ^ 2 + 2hx + h ^ 2 + 3x + 3h +16 "utvidelsen kan bli igjen i dette skjemaet eller forenklet" "ved faktorisering" = x ^ 2 + x (2h + 3) + h (h + 3) +16