Svar:
Lengde:
Forklaring:
Den enkleste måten å se dette på er å merke seg at begge punktene er på samme horisontale linje (
Hvis du virkelig vil at du kan bruke den mer generelle avstandsformelen:
PERIMETER av likevel trapesformet ABCD er lik 80 cm. Lengden på linjen AB er 4 ganger større enn lengden på en CD-linje som er 2/5 lengden på linjen BC (eller linjene som er like i lengden). Hva er området med trapesen?
Trapesområdet er 320 cm ^ 2. La trapesen være som vist nedenfor: Her, hvis vi antar mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Derav omkrets er (5a) / 2xx2 + a + 4a = 10a Men omkretsen er 80 cm .. Derav a = 8 cm. og to paallelsider vist som a og b er 8 cm. og 32 cm. Nå tegner vi perpendikulære fron C og D til AB, som danner to identiske rettvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er høyden sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 og dermed so
Hva er lengden på linjesegmentet med endepunkter hvis koordinater er (-1, 4) og (3, 2)?
Lengden er sqrt (20) eller 4.472 avrundet til nærmeste tusen. Formelen for å beregne avstanden mellom to punkter er: d = sqrt ((farge (rød) (x_2) - farge (blå) (x_1)) ^ 2 + (farge (rød) (y_2) - farge (blå) )) 2) Bytte verdiene fra problemet og beregne d gir: d = sqrt ((farge (rød) (3) - farge (blå) (- 1)) ^ 2 + (farge (rød) farge (blå) (1)) 2 2 (farge (rød) (2) - farge (blå) (4) )) ^ 2) d = sqrt (4) ^ 2 + (-2) ^ 2) d = sqrt (16 + 4) d = sqrt (20) = 4 472 avrundet til nærmeste tusen.
Et linjesegment har endepunkter ved (a, b) og (c, d). Linjesegmentet er utvidet med en faktor r rundt (p, q). Hva er de nye endepunktene og lengden på linjesegmentet?
(1-r) q + rb), (c, d) til ((1-r) p + rc, (1-r) q + rd), Ny lengde l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Jeg har en teori alle disse spørsmålene er her, så det er noe for nybegynnere å gjøre. Jeg skal gjøre det generelle tilfellet her og se hva som skjer. Vi oversetter flyet slik at utvidelsespunktet P-kortene til opprinnelsen. Deretter skaler dilatasjonen koordinatene med en faktor på r. Da oversetter vi flyet tilbake: A '= r (A - P) + P = (1-r) P + r A Det er den parametriske ligningen for en linje mellom P og A, med r = 0 som gir P, r = 1 gir A, og r = r gir A ', bildet av A under d