Er dette forholdet, {(3,5), (-10, 1), (3, 9) (1,7)], en funksjon? Hva er dens domene og rekkevidde?
Ingen domene: x i {3, -10,1} Område: y i {5,1,9,7} Gitt forholdet: farge (hvit) ("XXX") (x, y) i { ), (- 10,1), (3,9), (1,7)} relasjonen er en funksjon hvis og bare hvis farge (hvit) ("XXX") ingen verdi av x er knyttet til mer enn en verdi av y. I dette tilfellet når x = 3 har vi to verdier for y (nemlig 5 og 9). Derfor er dette ikke en funksjon.
Funksjonen f er slik at f (x) = a ^ 2x ^ 2-ax + 3b for x <1 / (2a) Hvor a og b er konstant for tilfellet der a = 1 og b = -1 Finn f ^ - 1 (cf og finn domenet jeg kjenner domenet til f ^ -1 (x) = rekkevidde av f (x) og det er -13/4, men jeg vet ikke ulik signaturretning?
Se nedenfor. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Område: Sett inn form y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimumsverdi -13/4 Dette skjer ved x = 1/2 Så rekkevidde er 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Bruke kvadratisk formel: y = (- (- 1) + -sqrt ((1) ^ 2-4 (1) (-3-x))) / 2y = (1 + -sqrt (4x + 13)) / 2f ^ (- 1) (x) = 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med en liten tanke kan vi se at for domenet har vi den nødvendige inverse : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med domene: (-13 / 4, oo) Merk at vi ha
Hva er toppunktet, symmetriaksen, maksimums- eller minimumsverdien, domene og rekkevidde av funksjonen, og x og y avlyser for y = x ^ 2-10x + 2?
Y = x ^ 2-10x + 2 er ligningen til en parabola som vil åpne oppover (på grunn av den positive koeffisienten x ^ 2). Så vil den ha en Minimum Helling av denne parabolen er (dy) / (dx) = 2x-10 og denne hellingen er lik null i vertexet 2x - 10 = 0 -> 2x = 10 -> x = 5 X-koordinatet til vertexet vil være 5 y = 5 ^ 2-10 (5) +2 = 25-50 + 2 = -23 Vertexet er i farge (blå) ((5, -23) og har en Minimum Verdi farge (blå) (- 23 på dette punktet. Symmetriaksen er farge (blå) = 5 Domenet vil være farge (blå) (inRR (alle reelle tall) Utvalget av denne ligningen er farge (blå) ({