Svar:
Vi kan løse dette ved hjelp av verteksformelen,
Forklaring:
Standardformatet for en parabola er
Men det er også verteksformelen,
Hvor
Så fra spørsmålet ville ligningen være
For å finne a, erstatt x- og y-verdiene som er gitt:
så formelen, i vertex form, er
For å finne standardformularen, utvider du
Svar:
For problemer av denne typen, bruk vertex form, y = a
Forklaring:
I vertexform, nevnt ovenfor, er toppunktets koordinater (p, q) og et punkt (x, y) som er på parabolen.
Når vi finner likningen av parabolen, må vi løse for a, som påvirker bredden og retningen for åpningen av parabolen.
y = a
17 = a
17 = 576a - 23
17 + 23 = 576a
Så er ligningen av parabolen y =
Forhåpentligvis forstår du nå!
Hva er likningen av parabolen som har et toppunkt på (12, 4) og går gjennom punkt (7,54)?
Y = 2 (x-12) ^ 2 + 4 Du kan bruke vertexform, y = a (x-h) ^ 2 + k, for å løse for ligningen. Parabolenes vinkelpunkt (h, k) og det oppgitte punktet er (x, y), slik at h = 12, k = 4, x = 7 og y = 54. Bare koble den inn for å få 54 = a (7-12) ^ 2 + 4. Forenkle inne i parabelen først for å få 54 = a (-5) ^ 2 + 4, gjør deretter eksponenten for å få 54 = 25a-4. Trekk 4 fra begge sider for å isolere variabelen og få 50 = 25a. Del begge sider med 25 for å få a = 2, og koble deretter dette tilbake til vertexform for å få ligningen y = 2 (x-12) ^ 2 + 4.
Hva er likningen av parabolen som har et toppunkt på (-14, 2) og går gjennom punkt (0, -17)?
Y = -19 / 196 (x + 14) ^ 2 + 2 y = a (xh) ^ 2 + k => parabolas likning i vertexform hvor (h, k) er vertexet, så i dette tilfelle: y = a (x + 14) ^ 2 + 2 => erstatning (x, y) = (0, -17) for å løse for a: -17 = a (0 + 14) ^ 2 + 2 => forenkle: -19 = 196a a = -19 / 196 derfor er ligningen: y = -19 / 196 (x + 14) ^ 2 + 2
Hva er likningen av parabolen som har et toppunkt på (14, -9) og går gjennom punkt (0, -5)?
Se forklaring, for eksistensen av en familie av paraboler Ved å pålegge en ytterligere betingelse om at aksen er x-akse, får vi et medlem 7y ^ 2-8x + 70y + 175 = 0. Fra definisjon av parabolen er den generelle ligningen til en parabol som har fokus på S (alfa, beta) og directrix DR som y = mx + c, sqrt (x-alfa) ^ 2 + (y-beta) ^ 2) = | y-mx-c | / sqrt (1 + m ^ 2), med 'avstand fra S = avstand fra DR'. Denne ligningen har 4 parametre {m, c, alpha, beta}. Når det går gjennom to punkter, får vi to likninger som relaterer de fire parametrene. Av de to punktene er en toppunktet som bise