Svar:
Se entiers løsningsprosess nedenfor.
Forklaring:
Først må vi bestemme helling av linjen som går gjennom de to punktene. Hellingen kan bli funnet ved å bruke formelen:
Hvor
Ved å erstatte verdiene fra punktene i problemet gir:
Så hellingen til en hvilken som helst linje vinkelrett på denne linjen, la oss kalle denne hellingen
Derfor, for problemet:
Hva er hellingen til en hvilken som helst linje vinkelrett på linjen som går gjennom (5,0) og (-4, -3)?
Hellingen av en linje vinkelrett på linjen som går gjennom (5,0) og (-4, -3) vil være -3. Hellingen til en vinkelrett linje vil være lik den negative inversen av hellingen til den opprinnelige linjen. Vi må begynne med å finne bakken på den opprinnelige linjen. Vi kan finne dette ved å ta forskjellen i y delt med forskjellen i x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Nå for å finne helling av en vinkelrett linje, tar vi bare den negative inversen av 1 / 3: -1 / (1/3) = - 1 * 3/1 = -3 Dette betyr at hellingen til en linje vinkelrett på den opprinnelige er -3.
Hva er hellingen til en hvilken som helst linje vinkelrett på linjen som går gjennom (0,0) og (-1,1)?
1 er hellingen til en hvilken som helst linje vinkelrett på linjen. Hellingen er steget over løp, (y_2 -y_1) / (x_2-x_1). Hellingen er vinkelrett på hvilken som helst linje, den er negativ gjensidig. Hellingen til den linjen er negativ en slik at vinkelrett mot den ville være 1.
Hva er hellingen til en hvilken som helst linje vinkelrett på linjen som går gjennom (0,6) og (18,4)?
Helling av en linje vinkelrett på linjen som går gjennom (0,6) og (18,4) er 9 Hellingen av linjen som går gjennom (0,6) og (18,4) er m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 Produktet av skråninger av de vinkelrette linjene er m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Derfor er helling av en hvilken som helst linje vinkelrett på linjen som går gjennom (0,6) og (18,4) 9 [Ans]