Svar:
=
Forklaring:
Dette er et enkelt grenseproblem der du bare kan koble til 3 og evaluere. Denne typen funksjon (
å evaluere:
=
For visuelt å se svaret, se grafen under, når x nærmer 3 fra høyre (positiv side), kommer det til punktet (3,9) og dermed grensen på 9.
Hvordan finner du grensen for (sin (x)) / (5x) når x nærmer seg 0?
Grensen er 1/5. Gitt lim_ (xto0) sinx / (5x) Vi vet at fargen (blå) (lim_ (xto0) sinx / (x) = 1 Så vi kan omskrive vår gitt som: lim_ (xto0) [sinx / (x) * 1 / 5] 1/5 * lim_ (xto0) [sinx / (x)] 1/5 * 1 1/5
Hvordan finner du grensen for (1 / (h + 2) ^ 2 - 1/4) / h når h nærmer seg 0?
Vi må først manipulere uttrykket for å sette det på et mer praktisk form La oss jobbe med uttrykket (1 / (h + 2) ^ 2 -1/4) / h = ((4- (h + 2) ^ 2) / (4 (h + 2) ^ 2)) / h = ((4- (h2 2 + 4h + 4)) / (4 (h + 2) 2)) / h = (((4-h ^ 2-4h-4)) / (4 (h + 2) ^ 2)) / h = (- h ^ 2-4h) / (4 (h + 2) ^ 2h) = (h (-h- 4)) / (4 (h + 2) ^ 2 h) = (-h-4) / (4 (h + 2) ^ 2) Tar nå grenser når h-> 0 har: lim_ (h-> 0 ) (- h-4) / (4 (h + 2) ^ 2) = (-4) / 16 = -1/4
Hvordan finner du grensen til [(sin x) * (sin ^ 2 x)] / [1 - (cos x)] når x nærmer seg 0?
Utfør noen konjugatmultiplikasjon og forenkle for å få lim_ (x-> 0) (sinx * sin ^ 2x) / (1-cosx) = 0 Direkte substitusjon produserer ubestemt form 0/0, så vi må prøve noe annet. Prøv å multiplisere (sinx * sin ^ 2x) / (1-cosx) med (1 + cosx) / (1 + cosx): (sinx * sin ^ 2x) / (1-cosx) * (1 + cosx) / + cosx) = (sinx * sin ^ 2x (1 + cosx)) / (1-cosx) (1 + cosx)) = (sinx * sin ^ 2x (1 + cosx)) / (1-cos ^ 2x) Denne teknikken kalles konjugatmultiplikasjon, og det fungerer nesten hver gang. Tanken er å bruke forskjellen på kvadrategenskaper (a-b) (a + b) = a ^ 2-b ^ 2 for å