gitt
Merk at dette er en parabola i standardposisjon (vertikal symmetriakse).
Symmetriaksen passerer gjennom toppunktet.
En metode for å bestemme toppunktet er ved å merke at derivatet av funksjonen er lik null ved toppunktet
Hvis
(vi kunne nå beregne verdien av
Symmetriaksen er
Annen vei:
I en slik parabola finner du også midtpunktet mellom de to punktene hvor kurven krysser
Som du vil se
Samme svar, mindre arbeid, men denne metoden er ikke alltid brukbar.
Symmetriaksen for en funksjon i form f (x) = x ^ 2 + 4x - 5 er x = -2. Hva er koordinatene til toppunktet i grafen?
Vetex -> (x, y) = (- 2, -9) Gitt at x _ ("vertex") = - 2 Sett y = f (x) = x ^ 2 + 4x-5 Substitutt (-2) hvor du ser en x farge (grønn) (y = farge (rød) (x) ^ 2 + 4color (rød) (x) -5color (hvit) ("dddd") -> farge (hvit) ("dddd") y = farge (rød) (2)) 2 + 4farger (rød) ((- 2)) - 5 farger (grønn) (farge (hvit) ("ddddddddddddddddd") -> farge (hvit) = + 4color (hvit) ("dddd") - 8color (hvit) ("dd") - 5 y _ ("vertex") = - 9 Vetex -> (x, y) = (- 2, -9)
Sammenligne grafen for g (x) = (x-8) ^ 2 med grafen for f (x) = x ^ 2 (parent-grafen). Hvordan ville du beskrive sin transformasjon?
G (x) er f (x) forskjøvet til høyre med 8 enheter. Gitt y = f (x) Når y = f (x + a) flyttes funksjonen til venstre av en enhet (a> 0), eller forskyves til høyre ved en enhet (a <0) g (x) = (x-8) ^ 2 => f (x-8) Dette resulterer i at f (x) blir forskjøvet til høyre med 8 enheter.
Skiss grafen for y = 8 ^ x som angir koordinatene til noen punkter hvor grafen krysser koordinataksene. Beskriv fullstendig transformasjonen som forvandler grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenfor. Eksponentielle funksjoner uten vertikal transformasjon krysse aldri x-aksen. Som sådan vil y = 8 ^ x ikke ha x-avskjæringer. Det vil ha en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal likne følgende. grafen for y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhet til venstre slik at det er y- avskjære ligger nå på (0, 8). Også du vil se at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåpentligvis hjelper dette!