Svar:
De vertikale asymptotene er
Den horisontale asymptoten er
Ingen skrå asymptote
Forklaring:
Vi trenger
Vi faktoriser nevneren
Som vi ikke kan dele med
De vertikale asymptotene er
Det er ingen skrå asymptoter som graden av telleren er
Den horisontale asymptoten er
Vi kan bygge et tegnet diagram for å få en generell oversikt over grafen
Avbruddene er
Her er grafen
graf ((y- (x) / (x ^ 2-9)) (y) (y-1000 (x + 3)) (y-1000 (x-3)) = 0 -18,05, 18,02, -9,01, 9.03}
Hva er asymptotene til y = 1 / (x-2) +1 og hvordan graver du funksjonen?
Vertikal: x = 2 Horisontal: y = 1 1. Finn den vertikale asymptoten ved å sette verdien av nevneren (ne) til null. x-2 = 0 og derfor x = 2. 2. Finn den horisontale asymptoten ved å studere funksjonens sluttadferd. Den enkleste måten å gjøre det på er å bruke grenser. 3. Siden funksjonen er en sammensetning av f (x) = x-2 (økende) og g (x) = 1 / x + 1 (avtagende), faller det for alle definerte verdier av x, dvs. (-oo, 2] uu [2, oo). graf {1 / (x-2) +1 [-10, 10, -5, 5]} lim_ (x-> oo) 1 / (x-2) + 1 = 0 + 1 = 1 Andre eksempler: Hva er nuller, grad og sluttadferd på y = -2x (x-1) (
Hva er asymptotene til y = 1 / (x-2) og hvordan graver du funksjonen?
Vertikal asymptote: x = 2 og horisontal asymptote: y = 0 Graf - Rektangulær hyperbola som nedenfor. y = 1 / (x-2) y er definert for x i (-oo, 2) uu (2, + oo) Vurder lim_ (x-> 2 ^ +) y = + oo Og lim_ (x-> 2 ^ - y = -oo Derfor har y en vertikal asymptote x = 2 Nå betrakt lim_ (x-> oo) y = 0 Derfor har y en horisontal asymptote y = 0 y er en rektangulær hyperbola med grafen under. graf {1 / (x-2) [-10, 10, -5, 5]}
Hva er asymptotene til y = 2 / (x + 1) -4 og hvordan graver du funksjonen?
Denne typen spørsmål ber deg om å tenke på hvordan tall oppfører seg når de grupperes sammen i en ligning. farge (blå) ("punkt 1") Det er ikke tillatt (udefinert) når en nevner tar på verdien av 0. Så som x = -1 blir nevneren til 0, er x = -1 en "ekskludert verdi farge blå) ("punkt 2") Det er alltid verdt å undersøke når denominatorene nærmer seg 0 da dette vanligvis er en asymptote. Anta at x har en tendens til -1, men fra den negative siden. Dermed | -x |> 1. Da er 2 / (x + 1) en svært stor negativ verdi -4 blir ub