Svar:
Forklaring:
Formelen som beskriver denne befolkningens variasjon er gitt av:
Hvor
I problemet
Så
# P = * 951,300 (1-0,014) ^ 5 = 951 300 * 0986 ^ 5 = 886 548 #
Funksjonen p = n (1 + r) ^ t gir den nåværende befolkningen i en by med en vekstrate på r, t år etter at befolkningen var n. Hvilken funksjon kan brukes til å bestemme befolkningen i enhver by som hadde en befolkning på 500 personer for 20 år siden?
Befolkningen vil bli gitt ved P = 500 (1 + r) ^ 20 Som befolkning for 20 år siden var 500 veksthastighet (i byen er r (i brøkdeler - hvis det er r% gjør det r / 100) og nå (dvs. 20 år senere ble populasjonen gitt ved P = 500 (1 + r) ^ 20
Omkretsen av en trekant er 29 mm. Lengden på den første siden er to ganger lengden på den andre siden. Lengden på den tredje siden er 5 mer enn lengden på den andre siden. Hvordan finner du sidelengder av trekanten?
S_1 = 12 s_2 = 6 s_3 = 11 En trekants omkrets er summen av lengdene på alle sider. I dette tilfellet er det gitt at omkretsen er 29 mm. Så for dette tilfellet: s_1 + s_2 + s_3 = 29 Så løser vi lengden på sidene, vi oversetter setninger i gis i ligningsform. "Lengden på den første siden er to ganger lengden på den andre siden" For å løse dette tilordner vi en tilfeldig variabel til enten s_1 eller s_2. For dette eksempelet ville jeg la x være lengden på den andre siden for å unngå å ha brøker i min ligning. så vi vet at: s_1 = 2s_
Befolkningen av en cit vokser med en hastighet på 5% hvert år. Befolkningen i 1990 var 400.000. Hva ville være den forventede nåværende befolkningen? I hvilket år ville vi forutsi at befolkningen nå 1000.000?
11. oktober 2008. Veksten i n år er P (1 + 5/100) ^ n Startverdien av P = 400 000, 1. januar 1990. Så vi har 400000 (1 + 5/100) ^ n Så vi må bestemme n for 400000 (1 + 5/100) ^ n = 1000000 Del begge sider med 400000 (1 + 5/100) ^ n = 5/2 Ta logger n ln (105/100) = ln (5/2 ) n = ln 2,5 / ln 1,05 n = 18,780 år progresjon til 3 desimaler Så året blir 1990 + 18.780 = 2008.78 Befolkningen når 1 million innen 11. oktober 2008.