Den generelle formen av cosinus funksjonen kan skrives som
Hvis
www.regentsprep.org/regents/math/algtrig/att7/sinusoidal.htm
Vertikale og horisontale skift,
Her er et godt eksempel på vertikale og horisontale skift:
www.sparknotes.com/math/trigonometry/graphs/section3.rhtml
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Områdene til de to klokkefagene har et forhold på 16:25. Hva er forholdet mellom radiusen til det mindre uret ansiktet til radiusen til det større uret ansiktet? Hva er radiusen til det større uret ansiktet?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => r_2 = 5
Skiss grafen for y = 8 ^ x som angir koordinatene til noen punkter hvor grafen krysser koordinataksene. Beskriv fullstendig transformasjonen som forvandler grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenfor. Eksponentielle funksjoner uten vertikal transformasjon krysse aldri x-aksen. Som sådan vil y = 8 ^ x ikke ha x-avskjæringer. Det vil ha en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal likne følgende. grafen for y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhet til venstre slik at det er y- avskjære ligger nå på (0, 8). Også du vil se at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåpentligvis hjelper dette!