Svar:
Se nedenfor:
Forklaring:
Første trinn er å finne det første derivatet av
Derfor:
Verdien av 8s betydning er at dette er gradienten til
Så vår linjefunksjon er for tiden
Vi må imidlertid også finne y-interceptet, men for å gjøre dette trenger vi også y-koordinaten til punktet der
Støpsel
Så et punkt på tangentlinjen er
Nå, ved å bruke gradientformelen, kan vi finne ligningen av linjen:
gradient
Derfor:
Svar:
Forklaring:
Vi er gitt
For å finne hellingen av tangentlinjen tar vi derivatet av vår funksjon.
Bytte ut vårt poeng
Med en skråning og et punkt på linjen, kan vi løse for ligningen av linjen.
Følgelig er tangentlinjens ligning:
Svar:
Forklaring:
# "vi krever hellingen m og et punkt" (x, y) "på linjen" #
# • farge (hvit) (x) M_ (farge (rød) "tangent") = f '(- 1) #
#rArrf '(x) = 6-2x #
#rArrf '(- 1) = 6 + 2 = 8 #
# "og" f (-1) = - 6-1 = -7rArr (-1, -7) #
# RArry + 7 = 8 (x + 1) #
# rArry = 8x + 1larrcolor (rød) "ekvation av tangent" #
Hvordan bruker du implisitt differensiering for å finne ligningen til tangentlinjen til kurven x ^ 3 + y ^ 3 = 9 ved punktet hvor x = -1?
Vi begynner på dette problemet ved å finne tangenspunktet. Erstatning i verdien av 1 for x. x ^ 3 + y ^ 3 = 9 (1) ^ 3 + y ^ 3 = 9 1 + y ^ 3 = 9 y ^ 3 = 8 Ikke sikker på hvordan du viser en kubet rot ved hjelp av vår mattenotasjon her på sokratisk men husk at Å øke en mengde til 1/3 effekten er ekvivalent. Løft begge sider til 1/3 effekten (y ^ 3) ^ (1/3) = 8 ^ (1/3) y ^ (3 * 1/3) = 8 ^ (1/3) y ^ (3 / 3) = 8 ^ (1/3) y ^ (1) = 8 ^ (1/3) y = (2 ^ 3) ^ (1/3) y = 2 ^ (3 * 1/3) y = 2 ^ (3/3) y = 2 ^ (1) y = 2 Vi fant bare at når x = 1, y = 2 Fullfør den implisitte differensiering
Hva er hellingen til tangentlinjen til ligningen y = x ^ 2 (3x + 1 / x ^ 3) ved x = 1/3?
Hastighet av tangent til y ved x = 1/3 er -8 y = x ^ 2 (3x + 1 / x ^ 3) = x ^ 2 (3x + x ^ (-3)) dy / dx = x ^ 2 3-3x ^ (- 4)) + 2x (3x + x ^ (- 3)) Produktregel = 3x ^ 2-3x ^ (- 2) + 6x ^ 2 + 2x ^ (-2) = 9x ^ 2- x ^ (- 2) Hellingen (m) av tangenten til y ved x = 1/3 er dy / dx ved x = 1/3 Således: m = 9 * (1/3) ^ 2 - (1/3 ) ^ (- 2) m = 1-9 = 8
Hva er ligningen av tangentlinjen til f (x) = sqrt (x ^ 2e ^ x) ved x = 3?
Y = 11.2x-20.2 Eller y = (5e ^ (3/2)) / 2x-2e ^ (3/2) y = e ^ (3/2) ((5x) / 2-2) Vi har: f (x) = (x ^ 2e ^ x) ^ (1/2) f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * d / dx [x ^ 2e ^ x] f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * (2xe ^ x + x ^ 2e ^ x) f' (x) = ((2xe ^ x + x ^ 2e ^ x) (x ^ 2e ^ x) ^ (- 1/2)) / 2f '(x) = (2xe ^ x + x ^ 2e ^ x) / (2 (x ^ 2e ^ x) ^ 2)) = (2xe ^ x + x ^ 2e ^ x) / (2sqrt (x ^ 2e ^ x)) f '(3) = (2 (3) e ^ 3 + 3 ^ 2e ^ 3) / (2sqrt (3e2e ^ 3)) = (5e ^ (3/2)) / 2 ~~ 11,2 y = mx + cf (3) = sqrt (9e ^ 3) = 3e ^ (3/2) ~~ 13,4 13,4 = 11,2 (3) + cc = 13,4-11,2 (3) = - 20,2 y = 11,2x-20,2 Eller y = (