Svar:
Domenet er
Forklaring:
Å observere en graf av funksjonen er svært nyttig for å bestemme svaret her:
Vi kan se at et hvilket som helst tall vil fungere som en inngang, bortsett fra
Dermed et hvilket som helst tall bortsett fra
Det andre du kanskje ser er at funksjonen kan være en utrolig stor verdi, men mens den kommer veldig nært til
Dermed et hvilket som helst tall bortsett fra
Domenet til f (x) er settet av alle reelle verdier bortsett fra 7, og domenet til g (x) er settet av alle reelle verdier bortsett fra -3. Hva er domenet til (g * f) (x)?
Alle reelle tall unntatt 7 og -3 når du multipliserer to funksjoner, hva gjør vi? vi tar f (x) -verdien og multipliserer den med g (x) -verdien, hvor x må være det samme. Begge funksjonene har imidlertid begrensninger, 7 og -3, så produktet av de to funksjonene må ha * begge * begrensninger. Vanligvis når de har operasjoner på funksjoner, hvis de forrige funksjonene (f (x) og g (x)) hadde begrensninger, blir de alltid tatt som en del av den nye begrensningen av den nye funksjonen, eller deres drift. Du kan også visualisere dette ved å lage to rasjonelle funksjoner med forsk
Hva er domenet og omfanget av funksjonen?
(-oo, 0) uu (0, + oo), (- oo, 0) uu (0, + oo)> "en måte er å finne diskontinuiteter av f (x)" Nivån til f (x) kan ikke være null da dette ville gjøre f (x) udefinert. Å ligne nevnen til null og løse gir verdien som x ikke kan være. "løs" 3x ^ 7 = 0rArrx = 0larrcolor (rød) "ekskludert verdi" rArr-domenet er "x-rR, x! = 0 rArr (-oo, 0) uu (0, + oo) larrcolor (blå)" intervallnotasjon "lim_ (xto + -oo), f (x) toc" (en konstant) "" divider teller / nevner med "x ^ 7f (x) = (1 / x ^ 7) / ((3x ^ 7) / x ^ 7) =
Hva er domenet til den kombinerte funksjonen h (x) = f (x) - g (x) hvis domenet til f (x) = (4,4,5] og domenet til g (x) er [4, 4,5 )?
Domenet er D_ {f-g} = (4,4,5). Se forklaring. (f-g) (x) kan bare beregnes for de x, for hvilke både f og g er definert. Så vi kan skrive det: D_ {f-g} = D_fnnD_g Her har vi D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)