Svar:
Se en løsningsprosess under:
Forklaring:
For å finne omkretsen må vi finne lengden på hver side ved hjelp av formelen for avstand. Formelen for beregning av avstanden mellom to punkter er:
Lengde på A-B:
Lengde på A-C:
Lengde på B-C:
Perimeter av A-B-C:
Bena til høyre trekant ABC har lengder 3 og 4. Hva er omkretsen av en riktig trekant med hver side to ganger lengden på den tilsvarende siden i trekanten ABC?
2 (3) +2 (4) +2 (5) = 24 Triangle ABC er en 3-4-5 trekant - vi kan se dette fra å bruke Pythagorasetningen: a ^ 2 + b ^ 2 = c ^ 2 3 ^ 2 + 4 ^ 2 = 5 ^ 2 9 + 16 = 25 25 = 25 farge (hvit) (00) farge (grønn) rot Så nå vil vi finne omkretsen av en trekant som har sider dobbelt så stor som av ABC: 2 ( 3) 2 (4) 2 (5) = 6 + 8 + 10 = 24
Posisjonsvektoren til A har de kartesiske koordinatene (20,30,50). Posisjonsvektoren til B har kartesiske koordinater (10,40,90). Hva er koordinatene til posisjonsvektoren for A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
P er midtpunktet til linjesegmentet AB. Koordinatene til P er (5, -6). Koordinatene til A er (-1,10).Hvordan finner du koordinatene til B?
B = (x_2, y_2) = (11, -22) Hvis et sluttpunkt (x_1, y_1) og midtpunktet (a, b) av et linjesegment er kjent, kan vi bruke midtpunktsformelen til finn det andre sluttpunktet (x_2, y_2). Hvordan bruke midpoint formel for å finne et sluttpunkt? (x1, y1) = (- 1, 10) og (a, b) = (5, -6) Så, (x_2, y_2) = (2 -) (2) (2)) - fargetone (rød) ((- 1)), 2farger (rød) -12-10) (x_2, y_2) = (11, -22) #