Svar:
Forklaring:
Domenet er settet av verdier som du kan mate som input til funksjonen din.
I ditt tilfelle, funksjonen
For eksempel, hvis du velger
Så må du spørre det
som er domenet ditt.
Hva er kvadratroten på 3 + kvadratroten på 72 - kvadratroten på 128 + kvadratroten på 108?
Vi vet at 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, så sqrt (108) - 2sqrt (2) sqrt (3) + sqrt = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Vi vet at 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, så sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Vi vet at 128 = 2 ^ 7 , så sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Forenkling 7sqrt (3) - 2sqrt
Hva er kvadratroten på 7 + kvadratroten på 7 ^ 2 + kvadratroten på 7 ^ 3 + kvadratroten på 7 ^ 4 + kvadratroten på 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Det første vi kan gjøre er å avbryte røttene på de med de samme kreftene. Siden: sqrt (x ^ 2) = x og sqrt (x ^ 4) = x ^ 2 for et hvilket som helst tall, kan vi bare si at sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nå kan 7 ^ 3 omskrives som 7 ^ 2 * 7, og at 7 ^ 2 kan komme seg ut av roten! Det samme gjelder 7 ^ 5, men det er omskrevet som 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1), og x! = - 1, hva vil f (g (x)) være lik? g (f (x))? f ^ -1 (x)? Hva ville domenet, rekkevidden og nullene for f (x) være? Hva ville domenet, rekkevidden og nullene for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = rot () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}