Først og fremst la oss finne finne avstanden mellom de to oppgitte punktene.
Avstandsformelen for kartesiske koordinater er
Hvor
La
Derfor er avstanden
Hvis enhetene er meter da
Hva er farten på et objekt som reiser fra (-1, 7,2) til (-3, 4,7) over 2 s?
V = sqrt 10 "avstand mellom to punkter er gitt som:" x = sqrt (Delta x ^ 2 + Delta y ^ 2 + Delta z ^ 2 Delta x = x_2-x_1 = -3 + 1 = -2 Delta y = y_2 -y_1 = 4-7 = -3 Delta z = z_2-z_1 = -3-2 = -5 x = sqrt ((- 2) ^ 2 + (-3) ^ 2 (- 5) ^ 2) x = sqrt (4 + 9 + 25) x = sqrt40 v = x / tv = sqrt 40/2 v = sqrt (4 * 10) / 2 = 2 * sqrt 10/2 v = sqrt 10
Hva er farten på et objekt som reiser fra (-2,1,2) til (-3, 0, -6) over 3 s?
1.41 "enheter" "/ s" For å få avstanden mellom 2 poeng i 3D-rom bruker du effektivt Pythagoras i 2 D (x.y) og bruker deretter resultatet til 3D (x, y, z). La oss ringe P = (- 2,1,2) og Q = (- 3,0,6) Så d (P, Q) = stablerel (rarr) (PQ) = sqrt ((- 2 + 3) ^ 2 + (1-0) ^ 2 + (2-6) ^ 2) = sqrt (18) = 4,24: .v = 4,24 / 3 = 1,41 "enheter / s"
Hva er farten på et objekt som reiser fra (-4,6,1) til (9,3,7) over 2 s?
Hastigheten er = 7.31ms ^ -1 Hastigheten er v = d / t Avstanden er d = sqrt ((9 - (- 4)) ^ 2+ (3-6) ^ 2 + (7-1) ^ 2 ) = sqrt (13 ^ 2 + 3 ^ 2 + 6 ^ 2) = sqrt (214) = 14,63m Hastigheten er v = 14.63 / 2 = 7.31ms ^ -1