Ved å skrive om litt,
Det vil være vertikale asymptoter når nevneren blir 0 og
Derfor er de vertikale asymptotene
for hele heltallet
Jeg håper at dette var nyttig.
Områdene til de to klokkefagene har et forhold på 16:25. Hva er forholdet mellom radiusen til det mindre uret ansiktet til radiusen til det større uret ansiktet? Hva er radiusen til det større uret ansiktet?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => r_2 = 5
Hva er asymptotene til f (x) = (1-5x) / (1 + 2x)?
"vertikal asymptote ved" x = -1 / 2 "horisontal asymptote på" y = -5 / 2 Nivån til f (x) kan ikke være null, da dette ville gjøre f (x) udefinert. Å ligne nevnen til null og løse gir verdien som x ikke kan være, og hvis telleren ikke er null for denne verdien, så er det en verisk asymptote. "Løs" 1 + 2x = 0rArrx = -1 / 2 "er asymptoten" "horisontale asymptoter opptre som" lim_ (xto + -oo), f (x) til c "(en konstant)" "deling av termer på teller / nevner med xf (x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) = (1
En ball er skutt fra cannnon til luft med oppoverhastighet på 40 fot / sek. Ligningen som gir høyden (h) av ballen til enhver tid idh (t) = -16t ^ 2 + 40t + 1,5. Hvor mange sekunder avrundet til nærmeste hundretid vil det ta ballen for å komme til bakken?
2.56 Gitt ligning er h = -16t ^ 2 + 40t + 1,5 Sett, t = 0 i ligningen, vil du få, h = 1,5 som betyr at ballen ble skudd fra 1,5 fot over bakken. Så når den går opp til en maksimal høyde (la, x), kommer den til grunnen, sin nettforskyvning vil være x- (x + 1,5) = - 1,5ft (ettersom oppadgående retning er tatt positiv i henhold til ligningen gitt) , hvis det tar tid t så legges h = -1.5 i den gitte ligningen, får vi, -1,5 = -16t ^ 2 + 40t + 1,5 Løsning dette får vi, t = 2.56s