Svar:
Forklaring:
Vi bruker følgende to identiteter:
Hvordan forenkler du f (theta) = csc2theta-sec2theta-3tan2theta til trigonometriske funksjoner av en enhet theta?
F (theta) = (cos ^ 2theta-sin ^ 2theta-2costhetasintheta-4sin ^ 2thetacos ^ 2theta) / (2sinthetacos ^ 3theta-sin ^ 3thetacostheta) Skriv om først som: f (theta) = 1 / sin (2theta) -1 / cos (2theta) -in (2theta) / cos (2theta) Så som: f (theta) = 1 / sin (2theta) - (1-sin (2theta)) / cos (2theta) = (cos (2theta) Vi vil bruke: cos (A + B) = cosAcosB-sinAsinB synd (A + B) = sinAcosB + cosAsinB Så vi få: f (theta) = (cos ^ 2theta-sin ^ 2theta-2costhetasintheta-4sin ^ 2thetacos ^ 2theta) / ((2sinthetacostheta) (cos ^ 2theta-sin ^ 2theta)) f (theta) = (cos ^ 2theta-sin ^ 2teta-2costhetasintheta-4sin ^ 2thetac
Hva er cot (theta / 2) når det gjelder trigonometriske funksjoner av en enhet theta?
Beklager mislest, cot ( theta / 2) = synd ( theta) / {1-cos ( theta)}, som du kan få fra å flippe tan ( theta / 2) = {1-cos ( theta)} / synd ( theta), bevis kommer. theta = 2 * arctan (1 / x) Vi kan ikke løse dette uten høyre side, så jeg skal bare gå med x. Målet omarrangeres, barneseng ( theta / 2) = x for theta. Siden de fleste kalkulatorer eller andre hjelpemidler ikke har en "barneseng" -knapp eller en barneseng ^ {- 1} eller bueskøyte ELLER acot-knapp "" ^ 1 (annet ord for den inverse cotangent-funksjonen, barneseng bakover), vi skal å gjøre dette
Hvordan uttrykker du f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta i form av ikke-eksponensielle trigonometriske funksjoner?
Se nedenfor f (theta) = 3sin ^ 2teta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3 (csc ^ 2theta-1) -3csc ^ 2eta = 3sin ^ 2theta + avbryt (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta