Svar:
Lengden på siden av torget er
Forklaring:
Siden diagonal av en firkant er også hypotenusen til en rettvinklet trekant hvor to sider er like, kan vi bruke Pythagorasetningen til å bestemme sidens lengde.
Vurder lengden på hver side av torget som
Del begge sider av
Lengden på hver side av firkant A økes med 100 prosent for å lage firkant B. Da økes hver side av firkanten med 50 prosent for å lage firkant C. Med hvilken prosent er arealet av firkant C større enn summen av områdene av kvadrat A og B?
Arealet av C er 80% større enn område av A + område av B Definer som en måleenhet lengden på den ene siden av A. Areal A = 1 ^ 2 = 1 sq.unit Lengden på sider av B er 100% mer enn lengden på sider av a rarr lengden på sider av b = 2 enheter areal på b = 2 ^ 2 = 4 sq.units. Lengden på sider av C er 50% mer enn lengden på sidene av B rarr. Lengden på sider av C = 3 enheter. Område på C = 3 ^ 2 = 9 kvm. Området av C er 9- (1 + 4) = 4 kvadrat enheter som er større enn de kombinerte områdene av A og B. 4 kvadrat enheter representerer 4 / (1 + 4)
Omkretsen av en trekant er 29 mm. Lengden på den første siden er to ganger lengden på den andre siden. Lengden på den tredje siden er 5 mer enn lengden på den andre siden. Hvordan finner du sidelengder av trekanten?
S_1 = 12 s_2 = 6 s_3 = 11 En trekants omkrets er summen av lengdene på alle sider. I dette tilfellet er det gitt at omkretsen er 29 mm. Så for dette tilfellet: s_1 + s_2 + s_3 = 29 Så løser vi lengden på sidene, vi oversetter setninger i gis i ligningsform. "Lengden på den første siden er to ganger lengden på den andre siden" For å løse dette tilordner vi en tilfeldig variabel til enten s_1 eller s_2. For dette eksempelet ville jeg la x være lengden på den andre siden for å unngå å ha brøker i min ligning. så vi vet at: s_1 = 2s_
Siden av et torg er 4 centimeter kortere enn den andre siden av siden. Hvis summen av områdene er 40 kvadratmeter, hvordan finner du lengden på den ene siden av det større torget?
Lengden på siden av større torg er 6 cm. La 'a' være siden av det kortere torget. Deretter er "a + 4" på siden av større firkant. Vi vet at arealet på et torg er lik plassen av den siden. Så a ^ 2 + (a + 4) ^ 2 = 40 (gitt) eller 2 a ^ 2 + 8 * a -24 = 0 eller a ^ 2 + 4 * a -12 = 0 eller (a + 6) * a-2) = 0 Så enten a = 2 eller a = -6 Side lengde kanot være negativt. :. a = 2. Derfor er lengden på siden av det større torget en + 4 = 6 [Svar]