Svar:
Fjerde sikt er
Forklaring:
Vi vil bruke binomial utvidelse av
Av Taylor-serien,
Så, fjerde sikt er
erstatte
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
Den fjerde sikt av en AP er lik de tre ganger det er syvende sikt overstiger to ganger det tredje siktet med 1. Finn første sikt og felles forskjell?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Substitusjonsverdier i (1) ligningen, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Ved å erstatte verdier i (2) ligningen, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Ved å løse ligninger (3) og (4) får vi samtidig, d = 2/13 a = -15/13
Hva er koordinatene til bildet av punktet (-3, 6) etter en utvidelse med et midtpunkt på (0, 0) og skalafaktoren på 1/3?
Multipliser skalafaktoren, 1/3, inn i koordinatene (-3, 6), for å få koordinatene til bildepunktet, (-1, 2). Ideen om utvidelse, skalering eller "resizing" er å gjøre noe enten større eller mindre, men når du gjør dette til en form, må du på en eller annen måte "skala" hver koordinat.En annen ting er at vi ikke er sikre på hvordan objektet vil "bevege seg"; når skalering gjør noe større, blir området / volumet større, men det vil bety at avstandene mellom punktene skal bli lengre, så hvilket punkt går der