Svar:
Periode
Se oscillasjonen i grafen, for den sammensatte bølgen, innen en periode
Forklaring:
graf {sin (18x) -cos (12x) -0.525, 0.525 -2.5, 2.5} Perioden for både sin kt og cos kt er
Her er de separate perioder av de to begrepene
Perioden (minst mulig) P, for den sammensatte oscillasjonen, er
gitt av
Til
Legg merke til at P / 2 ikke er perioden, slik at P er minst mulig verdi.
Se hvordan det virker.
Kontroller ved substitusjon P / 2, i stedet for P, for minst P.
Frekvensen
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2x (5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hva er ligningen av tangentlinjen til r = tan ^ 2 (theta) - sin (theta-pi) ved theta = pi / 4?
R = (2 + sqrt2) / 2r = tan ^ 2 tetanin (theta-pi) ved pi / 4r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - synd ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Hvordan uttrykker du f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta i form av ikke-eksponensielle trigonometriske funksjoner?
Se nedenfor f (theta) = 3sin ^ 2teta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3 (csc ^ 2theta-1) -3csc ^ 2eta = 3sin ^ 2theta + avbryt (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta