Svar:
Ligning av parabola er
Forklaring:
Her er directrixen en horisontal linje
Siden denne linjen er vinkelrett på symmetriaksen, er dette en vanlig parabol, hvor x-delen er kvadret.
Nå avstanden til et punkt på parabolen fra fokus på
Avstanden fra fokus er
Derfor
eller
eller
eller
Hva er parabolas likning med fokus på (0,0) og en direktrise av y = -6?
Ligningen er x ^ 2 = 12 (y + 3) Et hvilket som helst punkt (x, y) på parabolen er like langt fra fokuset og direktoren. Derfor er sqrt ((x-0) ^ 2 + (y-0) ^ 2 ) = y - (- 6) sqrt (x ^ 2 + y ^ 2) = y + 6 x ^ 2 + y ^ 2 = (y + 6) ^ 2 x ^ 2 + y ^ 2 = y ^ 2 + 12y + (X + 2) + (y + 2) -0,03) = 0 [-20,27, 20,27, -10,14, 10,14]}
Hva er parabolas likning med fokus på (-1, -2) og en direktrise av y = -10?
Y = x ^ 2/16 + x / 8-95 / 16 La (x_0, y_0) være et punkt på parabolen. Fokus på parabolen er gitt ved (-1, -2) Avstanden mellom de to punktene er sqrt ((x_0 - (- 1)) ^ 2+ (y_0 - (- 2)) ^ 2 eller sqrt ((x_0 + 1 ) ^ 2 + (y_0 + 2) ^ 2 Nå er avstanden mellom punktet (x_0, y_0) og den givne direktoren y = -10, er | y_0 - (- 10) | | y_0 + 10 | Equate de to avstandsuttrykkene og kvadrer begge sider. (x_0 + 1) ^ 2 + (y_0 + 2) ^ 2 = (y_0 + 10) ^ 2 eller (x_0 ^ 2 + 2x_0 + 1) + (y_0 ^ 2 + 4y_0 + 4) = (y_0 ^ 2 + 20y_0 + 100) Omarrangere og ta uttrykk som inneholder y_0 til en side x_0 ^ 2 + 2x_0 + 1 + 4-100 = 20y_0
Hva er parabolas likning med fokus på (1,3) og en direktrise av y = 2?
(x-1) ^ 2 = 2y-5 La deres være et punkt (x, y) på parabola. Avstanden fra fokus på (1,3) er sqrt ((x-1) ^ 2 + (y-3) ^ 2) og avstanden fra directrix y = 2 vil være y-2 Derfor vil ligningen være sqrt ( -1) 2 + (y-3) ^ 2 = (y-2) ^ 2 eller (x-1) ^ 2 + y ^ 2-6y + 9 = y ^ 2-4y + 4 eller (x-1) ^ 2 = 2y-5 graf {(x-1) ^ 2 = 2y-5 [-6,6 2, 10]}