Lag sannhetstabellen til forslaget ¬q [(pΛq) V ~ p]?

Lag sannhetstabellen til forslaget ¬q [(pΛq) V ~ p]?
Anonim

Svar:

Se nedenfor.

Forklaring:

gitt: #not p -> (p ^^ q) vv ~ p #

Logiske operatører:# "ikke p:" ikke p, ~ p; "og:" ^^; eller: vv #

Logikk Tabeller, negasjon:

#ul (| "" p | "" q | "" ~ p | "" ~ q |) #

# "" T | "" T | "" F | "" F | #

# "" T | "" F | "" F | "" T | #

# "" F | "" T | "" T | "" F | #

# "" F | "" F | "" T | "" T | #

Logiske tabeller, og & eller:

#ul (| "" p | "" q | "" p ^^ q "" | "" qvvq "" |) #

# | "" T | "" T | "" T "" | "" T "" | #

# | "" T | "" F | "" F "" | "" T "" | #

# | "" F | "" T | "" F "" | "" T "" | #

# | "" F | "" F | "" F "" | "" F "" | # #

Logikk Tabeller, hvis da:

#ul (| "" p | "" q | "" p-> q "" |) #

# | "" T | "" T | "" T "" | #

# | "" T | "" F | "" F "" | # #

# | "" F | "" T | "" T "" | # #

# | "" F | "" F | "" T "" | # #

Gitt logisk proposisjon del 1:

#ul (| "" p ^^ q "" | "" ~ p "" | "" (p ^^ q) vv ~ p |) #

# | "" T "" | "" F "" | "" T "" | #

# | "" F "" | "" F "" | "" F "" | # #

# | "" F "" | "" T "" | "" T "" | #

# | "" F "" | "" T "" | "" T "" | #

Gitt logisk proposisjon del 2:

(p ^^ q) vv ~ p | "" ~ q -> (p ^^ q) vv ~ p |) #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" T "" | "" T "" | #