To hjørner av en trekant har vinkler på (3 pi) / 4 og pi / 6. Hvis den ene siden av trekanten har en lengde på 5, hva er den lengste mulige omkretsen av trekanten?

To hjørner av en trekant har vinkler på (3 pi) / 4 og pi / 6. Hvis den ene siden av trekanten har en lengde på 5, hva er den lengste mulige omkretsen av trekanten?
Anonim

Svar:

Størst mulig område av trekanten er 17.0753

Forklaring:

Gitt er de to vinklene # (3n) / 4 # og # Pi / 6 # og lengden 5

Resterende vinkel:

# = pi - (((3pi) / 4) + pi / 6) = pi / 12 #

Jeg antar at lengden AB (5) er motsatt den minste vinkelen.

Bruke ASA

Område# = (C ^ 2 * sin (A) * sin (B)) / (2 * sin (C) #

Område# = (5 ^ 2 * sin (pi / 6) * sin ((3pi) / 4)) / (2 * sin (pi / 12)) #

Område#=17.0753#