Svar:
Forklaring:
# "ligningen til en parabola i" farge (blå) "vertex form" # er.
#COLOR (red) (bar (ul (| farge (hvit) (2/2) farge (sort) (y = a (x-h) ^ 2 + k) farge (hvit) (2/2) |))) # hvor (h, k) er koordinatene til toppunktet og a er en konstant.
# "for en parabol i standardform" y = ax ^ 2 + bx + c #
# "x-koordinaten til toppunktet er" #
#x_ (farge (rød) "toppunktet") = - b / (2a) #
# y = x ^ 2-x-56 "er i standard form" #
# "med" a = 1, b = -1, c = -56 #
.>
# "erstatte funksjon for y-koordinat av vertex" #
#rArry_ (farge (rød) "toppunktet") = (1/2) ^ 2-1 / 2-56 = -225 / 4 #
#rArrcolor (magenta) "vertex" = (1/2, -225 / 4) #
# rArry = (x-1/2) ^ 2-225 / 4larrcolor (rød) "i vertex form" #
Områdene til de to klokkefagene har et forhold på 16:25. Hva er forholdet mellom radiusen til det mindre uret ansiktet til radiusen til det større uret ansiktet? Hva er radiusen til det større uret ansiktet?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => r_2 = 5
Vertexformen til likningen av en parabola er x = (y - 3) ^ 2 + 41, hva er standardformen til ligningen?
Y = + - sqrt (x-41) +3 Vi må løse for y. Når vi har gjort det, kan vi manipulere resten av problemet (hvis vi trenger) for å endre det til standardformular: x = (y-3) ^ 2 + 41 trekke 41 på begge sider x-41 = (y -3) ^ 2 ta kvadratroten på begge sider farge (rød) (+ -) sqrt (x-41) = y-3 legg til 3 på begge sider y = + - sqrt (x-41) +3 eller y = 3 + -sqrt (x-41) Standardformen for Square Root-funksjonene er y = + - sqrt (x) + h, så vårt endelige svar skal være y = + - sqrt (x-41) +3
Vertexformen til ligningen til en parabola er y + 10 = 3 (x-1) ^ 2 hva er standardformen til ligningen?
Y = 3x ^ 2-6x-7 Forenkle den gitte ligningen som y + 10 = 3 (x ^ 2 -2x +1) Derfor y = 3x ^ 2x6 + 3-10 Eller y = 3x ^ 2-6x- 7, som er den nødvendige standardformularen.