Svar:
du må bare bruke bevegelsesbevegelser for å løse dette problemet
Forklaring:
vurdere diagrammet ovenfor jeg har trukket om situasjonen.
Jeg har tatt vinkelen på kanonen som
siden innledende hastighet ikke er gitt, vil jeg ta det som
kanonkulen er
Når du har funnet ut dette, må du bare bruke disse dataene i bevegelsesligningene.
vurderer horisontalbevegelsen av scenariet ovenfor, kan jeg skrive
for vertikal bevegelse
erstatte
det var det. herfra er det bare beregningene du må gjøre..
løse det ovennevnte uttrykket for
du får svar på
For å stimulere en berg-og dalbane, er en vogn plassert i høyden på 4 m og tillatt å rulle fra hvile til bunn. Finn hver av følgende for vognen hvis friksjon kan ignoreres: a) hastigheten i høyden på 1 m, b) høyden når hastigheten er 3 m / s?
A) 7,67 ms ^ -1 b) 3,53m Som det sies å ikke vurdere friksjonskraft, vil hele energien i systemet forbli konservert under denne nedstigningen. Så da vognen var på toppen av bergbanen, var den i ro, så i den høyden på h = 4m hadde den bare potensiell energi, dvs. mgh = mg4 = 4mg hvor m er massen av vognen og g er akselerasjon på grunn av tyngdekraften. Nå, når det kommer i en høyde av h '= 1m over bakken, vil den ha litt potensiell energi og litt kinetisk energi.Så, hvis i den høyden sin hastighet er v så vil total energi i den høyden være mgh
Vinkel A og B er komplementære. Målet for vinkel B er tre ganger målingen av vinkel A. Hva er målingen av vinkel A og B?
A = 22.5 og B = 67.5 Hvis A og B er gratis, A + B = 90 ........... Ligning 1 Målet for vinkel B er tre ganger målet for vinkel AB = 3A ... ... Equation 2 Ved å erstatte verdien av B fra ligning 2 i ligning 1, får vi A + 3A = 90 4A = 90 og dermed A = 22.5 Å sette denne verdien av A i begge likningene og løsningen for B, får vi B = 67.5 Derfor er A = 22.5 og B = 67.5
Hva er hastigheten for endring av bredden (i ft / sek) når høyden er 10 fot, hvis høyden er avtagende i det øyeblikket med en hastighet på 1 fot / sek. Et rektangel har både en skiftende høyde og en skiftende bredde , men høyden og bredden endrer seg slik at rektangelområdet alltid er 60 kvadratmeter?
Forandringshastigheten for bredden med tiden (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / ) = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / (()) dh) = - (60) / (h2 2) Så (dW) / (dt) = - (- (60) / (h2 2)) = (60) / (h ^ 2) Så når h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"