For dette problemet må vi bruke Pythagorasetningen.
hvor
Hypotenusens lengde i en høyre trekant er 20 centimeter. Hvis lengden på ett ben er 16 centimeter, hva er lengden på det andre benet?
"12 cm" Fra "Pythagoras Theorem" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 hvor "h =" Lengden på hypotenussiden "a =" Lengden på ett ben "b =" Lengden på en annen ben ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 (16 cm ") ^ 2" b " = sqrt ("20 cm") ^ 2 ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt "^ 2)" b = 12 cm "
Omkretsen av en trekant er 29 mm. Lengden på den første siden er to ganger lengden på den andre siden. Lengden på den tredje siden er 5 mer enn lengden på den andre siden. Hvordan finner du sidelengder av trekanten?
S_1 = 12 s_2 = 6 s_3 = 11 En trekants omkrets er summen av lengdene på alle sider. I dette tilfellet er det gitt at omkretsen er 29 mm. Så for dette tilfellet: s_1 + s_2 + s_3 = 29 Så løser vi lengden på sidene, vi oversetter setninger i gis i ligningsform. "Lengden på den første siden er to ganger lengden på den andre siden" For å løse dette tilordner vi en tilfeldig variabel til enten s_1 eller s_2. For dette eksempelet ville jeg la x være lengden på den andre siden for å unngå å ha brøker i min ligning. så vi vet at: s_1 = 2s_
PERIMETER av likevel trapesformet ABCD er lik 80 cm. Lengden på linjen AB er 4 ganger større enn lengden på en CD-linje som er 2/5 lengden på linjen BC (eller linjene som er like i lengden). Hva er området med trapesen?
Trapesområdet er 320 cm ^ 2. La trapesen være som vist nedenfor: Her, hvis vi antar mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Derav omkrets er (5a) / 2xx2 + a + 4a = 10a Men omkretsen er 80 cm .. Derav a = 8 cm. og to paallelsider vist som a og b er 8 cm. og 32 cm. Nå tegner vi perpendikulære fron C og D til AB, som danner to identiske rettvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er høyden sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 og dermed so