(en).
(B).
Så:
Del (b):
Så:
Ta naturlige logger på begge sider:
Ligningen t = .25d ^ (1/2) kan brukes til å finne antall sekunder, t, at det tar et objekt å falle en avstand på d fot. Hvor lenge tar det et objekt å falle 64 fot?
T = 2s Hvis d representerer avstanden i føtter, erstatter du bare d med 64, siden dette er avstanden. Så: t = .25d ^ (1/2) blir t = .25 (64) ^ (1/2) 64 ^ (1/2) er det samme som sqrt (64) Så vi har: t = .25sqrt 64) => .25 xx 8 = 2 t = 2 Merk: sqrt (64) = + -8 Vi ignorerer den negative verdien her fordi dette ville ha gitt -2s også. Du kan ikke ha negativ tid.
Halveringstiden til et bestemt radioaktivt materiale er 75 dager. En innledende mengde av materialet har en masse på 381 kg. Hvordan skriver du en eksponensiell funksjon som modellerer forfallet av dette materialet og hvor mye radioaktivt materiale forblir etter 15 dager?
Halveringstid: y = x * (1/2) ^ t med x som startmengde, t som "tid" / "halveringstid" og y som sluttbeløp. For å finne svaret, sett inn formelen: y = 381 * (1/2) ^ (15/75) => y = 381 * 0.87055056329 => y = 331.679764616 Svaret er omtrent 331.68
Halveringstiden til et bestemt radioaktivt materiale er 85 dager. En innledende mengde av materialet har en masse på 801 kg. Hvordan skriver du en eksponensiell funksjon som modellerer forfallet av dette materialet og hvor mye radioaktivt materiale gjenstår etter 10 dager?
La m_0 = "Startmasse" = 801kg "ved" t = 0m (t) = "Masse til tiden t" "Eksponensiell funksjon", m (t) = m_0 * e ^ (kt) ... "hvor" k = "konstant" "Halvlivet" = 85days => m (85) = m_0 / 2 Nå når t = 85days så m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) Ved å sette verdien av m_0 og e ^ k i (1) får vi m (t) = 801 * 2 ^ (- t / 85) Dette er funksjonen som også kan skrives i eksponentiell form som m (t) = 801 * e ^ (- (tlog2) / 85) Nå er mengden radioaktivt materiale