En lineær funksjon modellerer en rett linje som har en konstant helling eller endringstid.
Det finnes ulike former for lineære ligninger.
Standard skjema
hvor
Slope Intercept Form
hvor
Point Slope Form
hvor
Jane, Maria og Ben har hver en samling av kuler. Jane har 15 mer marmor enn Ben, og Maria har 2 ganger så mange kuler som Ben. Alt sammen har de 95 kuler. Lag en ligning for å bestemme hvor mange kuler Jane har, Maria har, og Ben har?
Ben har 20 marmor, Jane har 35 og Maria har 40 La x være mengden marmor Ben har da Jane har x + 15 og Maria har 2x 2x + x + 15 + x = 95 4x = 80 x = 20 derfor har Ben 20 marmor, Jane har 35 og Maria har 40
Første og andre termer av en geometrisk sekvens er henholdsvis de første og tredje uttrykkene for en lineær sekvens. Den fjerde termen av den lineære sekvensen er 10 og summen av dens første fem sikt er 60. Finn de fem første ordene av den lineære sekvensen?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan representeres som c_0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første elementet for den geometriske sekvensen vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og andre av GS er den første og tredje av en LS"), (c_0a + 3Delta = 10- > "Den fjerde termen av den lineære sekvensen er 10"), (5c_0a + 10Delta = 60 -> "Summen av dens første fem sikt er 60"):} Løsning for c_0, a, Delta oppnår vi c_0 = 64/3 , a =
Hva betyr det for et lineært system å være lineært uavhengig?
Betrakt et sett S med endelige dimensjonsvektorer S = {v_1, v_2, .... v_n} i RR ^ n La alfa_1, alfa_2, ...., alfa_n i RR være skalarer. Nå vurder vektorvektoren alpha_1v_1 + alpha_2v_2 + ..... + alpha_nv_n = 0 Hvis den eneste løsningen til denne ligningen er alpha_1 = alpha_2 = .... = alpha_n = 0, sies det at set Sof-vektorer er lineært uavhengige. Hvis imidlertid andre løsninger til denne ligningen finnes i tillegg til den trivielle løsningen der alle skalarene er null, sies det at vektorens sett S er lineært avhengig.