Svar:
Den flytende kraften er sterkere enn tyngdekraften (blokkens vekt). Følgelig er blokkens tetthet mindre enn vannets tetthet.
Forklaring:
Archimedes-prinsippet bekrefter at en kropp som er nedsenket i et væske (for eksempel en væske, eller mer presist vann) opplever en oppadgående kraft som er lik vekten av væske (væske, vann) fordrevet.
matematisk,
flytende kraft
mens vekten
Som kroppen flyter
Vannet til en fabrikk er lagret i en halvkuleformet tank med en indre diameter på 14 m. Tanken inneholder 50 kiloliter vann. Vann pumpes inn i tanken for å fylle kapasiteten. Beregn volumet av vann pumpet inn i tanken.?
668,7kL Gitt d -> "Diameteren til den hemisphriske tanken" = 14m "Tankens volum" = 1/2 * 4/3 * pi * (d / 2) ^ 3 = 1/2 * 4/3 * 22 / 7 * (7) ^ 3m ^ 3 = (44 * 7 * 7) /3m^3 ~~718.7kL Tanken inneholder allerede 50kL vann. Så volumet av vann som skal pumpes = 718,7-50 = 668,7kL
Vann lekker ut av en invertert konisk tank med en hastighet på 10.000 cm3 / min samtidig som vann pumpes inn i tanken i konstant hastighet Hvis tanken har en høyde på 6m og diameteren på toppen er 4m og Hvis vannstanden stiger med en hastighet på 20 cm / min når vannhøyden er 2m, hvordan finner du hastigheten som vannet pumpes inn i tanken?
La V være volumet av vann i tanken, i cm ^ 3; la h være dybden / høyden på vannet, i cm; og la r være radius av overflaten av vannet (på toppen), i cm. Siden tanken er en invertert kjegle, så er også massen av vann. Siden tanken har en høyde på 6 m og en radius på toppen av 2 m, betyr lignende trekanter at frac {h} {r} = frac {6} {2} = 3 slik at h = 3r. Volumet av den inverterte kjegle av vann er da V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differensier nå begge sider med hensyn til tiden t (i minutter) for å få frac {dV} {dt} = 3 pi r ^ {2} cdot frac
Hva er størrelsen på akselerasjonen av blokken når den er ved punktet x = 0,24 m, y = 0,52m? Hva er retningen for akselerasjonen av blokken når den er ved punktet x = 0,24m, y = 0,52m? (Se detaljer).
Siden xand y er ortogonale til hverandre, kan disse behandles uavhengig. Vi vet også at vecF = -gradU: .x-komponenten av todimensjonal kraft er F_x = - (delU) / (delx) F_x = -del / (delx) [(5,90 Jm ^ -2) x ^ 2- 3x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At Det ønskede punktet a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Tilsvarende er y-komponenten av kraft F_y = -del / (dely) [(5,90 Jm ^ -2) x ^ 2- (3,65 Jm ^ -3 = y ^ 3] F_y = 10.95y ^ 2 y-komponent av akselerasjon F_y = ma_ = 10.95y ^ 2 0.0400a_y = 10.95y ^ 2 => a_y = 10.95 / 0.0400y ^ 2 => a_y = 27.375y ^ 2 På ønsket punkt a_y = 27.375