Den grønne tanken inneholder 23 liter vann og fylles med en hastighet på 4 liter / minutt. Den røde tanken inneholder 10 liter vann og fylles med en hastighet på 5 liter / minutt. Når vil de to tankene inneholde samme mengde vann?
Etter 13 minutter vil begge tankene inneholde samme mengde, dvs. 75 liter vann. I løpet av 1 minutt fyller den røde tanken 5-4 = 1 gallon vann mer enn den grønne tanken. Grønn tank inneholder 23-10 = 13 liter mer vann enn rødtanken. Så rød tank vil ta 13/1 = 13 minutter for å inneholde samme mengde vann med grønn tank. Etter 13 minutter vil den grønne tanken inneholde C = 23 + 4 * 13 = 75 liter vann og etter 13 minutter vil den røde tanken inneholde C = 10 + 5 * 13 = 75 liter vann. Etter 13 minutter vil begge tankene inneholde samme mengde, dvs. 75 liter vann. [Ans]
Dyrehagen har to vanntanker som lekker. En vanntank inneholder 12 gal vann og lekker med en konstant hastighet på 3 g / time. Den andre inneholder 20 gal vann og lekker med en konstant hastighet på 5 g / time. Når vil begge tankene ha samme mengde?
4 timer. Første tank har 12g og mister 3g / hr Andre tank har 20g og mister 5g / hr Hvis vi representerer tiden ved t, kan vi skrive dette som en ligning: 12-3t = 20-5t Løsning for t 12-3t = 20-5t => 2t = 8 => t = 4: 4 timer. På dette tidspunktet vil begge tankene ha tømt samtidig.
Vann lekker ut av en invertert konisk tank med en hastighet på 10.000 cm3 / min samtidig som vann pumpes inn i tanken i konstant hastighet Hvis tanken har en høyde på 6m og diameteren på toppen er 4m og Hvis vannstanden stiger med en hastighet på 20 cm / min når vannhøyden er 2m, hvordan finner du hastigheten som vannet pumpes inn i tanken?
La V være volumet av vann i tanken, i cm ^ 3; la h være dybden / høyden på vannet, i cm; og la r være radius av overflaten av vannet (på toppen), i cm. Siden tanken er en invertert kjegle, så er også massen av vann. Siden tanken har en høyde på 6 m og en radius på toppen av 2 m, betyr lignende trekanter at frac {h} {r} = frac {6} {2} = 3 slik at h = 3r. Volumet av den inverterte kjegle av vann er da V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differensier nå begge sider med hensyn til tiden t (i minutter) for å få frac {dV} {dt} = 3 pi r ^ {2} cdot frac