Svar:
Vennligst se forklaring nedenfor
Forklaring:
Start fra venstre side
Utvid / multipliser / folie uttrykket
Kombiner like vilkår
Venstre side = høyre side
Bevis fullført!
Bevis det: sqrt (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Bevis under bruk av konjugater og trigonometrisk versjon av Pythagorasetning. Del 1 kvadrat (1 cosx) / (1 + cosx)) farge (hvit) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farge (hvit) ("XXX") = sqrt (1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farge (hvit) ("XXX") = (1-cosx) / sqrt 2x) Del 2 Tilsvarende sqrt (1 + cosx) / (1-cosx) farge (hvit) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Del 3: Kombinasjon av termer sqrt (1-cosx) / (1 + cosx)) + sqrt (1 + cosx) / (1-cosx) farge (hvit) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x) farge (hv
Hvordan beviser du (sinx - cosx) ^ 2 + (sin x + cosx) ^ 2 = 2?
2 = 2 (sinx-cosx) ^ 2 + (sinx + cosx) ^ 2 = 2 farge (rød) (sin ^ 2x) - 2 sinx cosx + farge (rød) (cos ^ 2x) + farge (blå) ^ 2x) + 2 sinx cosx + farge (blå) (cos ^ 2x) = 2 røde termer lik 1 fra Pythagorasetningen også, blå termer lik 1 Så 1 farge (grønn) (- 2 sinx cosx) + 1 farge (grønn ) (+ 2 sinx cosx) = 2 grønne termer sammen lik 0 Så nå har du 1 + 1 = 2 2 = 2 True
Hvordan beviser du (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2secx?
Konverter venstre side til termer med fellesnevner og legg til (konvertere cos ^ 2 + sin ^ 2 til 1 underveis); forenkle og referere til definisjon av sek = 1 / cos (cos (x) / (1 + sin (x))) + ((1 + sin (x)) / cos (x)) = + 1 + 2sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2sin (x)) / ) = 2 / cos (x) = 2 * 1 / cos (x) = 2sec (x)