Svar:
Nei.
Forklaring:
På grunn av en funksjons definisjon er det for enhver enkelt
På den annen side, hvis du graver dette, kan du gjøre vertikal linjetest. Hvis du tegner en vertikal linje og den krysser ligningen mer enn en gang, representerer ikke denne ligningen en funksjon.
Svar:
NEI. Se nedenfor
Forklaring:
En funksjon er en forklaring hvor hver eneste verdi av y, det er en enkelt og eneste verdi av x.
Legg merke til at for
Men for
Så det er to verdier (2 og -2), for hvilke "funksjonen" gir samme verdi 2. Da er det ikke en funksjon
Funksjonene f (x) = - (x - 1) 2 + 5 og g (x) = (x + 2) 2 - 3 er omskrevet ved hjelp av den fullstendige kvadratmetoden. Er toppunktet for hver funksjon et minimum eller et maksimum? Forklar begrunnelsen for hver funksjon.
Hvis vi skriver en kvadratisk i vertexform: y = a (x-h) ^ 2 + k Så: bbacolor (hvit) (8888) er koeffisienten på x ^ 2 bbhcolor (hvit) (8888) er symmetriaksen. bbkcolor (hvit) (8888) er maks / min verdi av funksjonen. Også: Hvis a> 0, vil parabolen være av skjemaet uuu og vil ha en minimumsverdi. Hvis en <0 da vil parabelen være av formen nnn og vil ha en maksimumsverdi. For de oppgitte funksjonene: a <0 f (x) = - (x-1) ^ 2 + 5farger (hvit) (8888) dette har en maksimumsverdi på bb5 a> 0 f (x) = (x + 2) ^ 2-3 farge (hvit) (8888888) dette har en minimumsverdi på bb (-3)
Nullene av en funksjon f (x) er 3 og 4, mens nullene av en andre funksjon g (x) er 3 og 7. Hva er null (er) for funksjonen y = f (x) / g (x )?
Bare null av y = f (x) / g (x) er 4. Som nuller av en funksjon f (x) er 3 og 4 betyr dette (x-3) og (x-4) faktorene f (x ). Videre er nuller av en andre funksjon g (x) 3 og 7, noe som betyr (x-3) og (x-7) er faktorer av f (x). Dette betyr at i funksjonen y = f (x) / g (x), selv om (x-3) skal avbrytes nevneren g (x) = 0 er ikke definert, når x = 3. Det er heller ikke definert når x = 7. Derfor har vi et hull på x = 3. og bare null av y = f (x) / g (x) er 4.
La f (x) = x-1. 1) Verifiser at f (x) er verken jevn eller merkelig. 2) Kan f (x) skrives som summen av en jevn funksjon og en merkelig funksjon? a) Hvis så, oppgi en løsning. Er det flere løsninger? b) Hvis ikke, bevis på at det er umulig.
La f (x) = | x -1 |. Hvis f var jevn, ville f (-x) være lik f (x) for alle x. Hvis f var merkelig, ville f (-x) være -f (x) for alle x. Vær oppmerksom på at for x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Siden 0 ikke er lik 2 eller til -2, er f ikke verken jevn eller merkelig. Kan f skrives som g (x) + h (x), hvor g er jevn og h er merkelig? Hvis det var sant, så g (x) + h (x) = | x - 1 |. Ring denne setningen 1. Erstatt x for -x. g (-x) + h (-x) = | -x - 1 | Siden g er jevn og h er merkelig, har vi: g (x) - h (x) = | -x - 1 | Ring denne setningen. 2. Sett setninger 1 og 2 sammen, vi ser at g (x)