Svar:
Forklaring:
Hvis den er parallell, har den samme helling (gradient).
Skrive:
Så er skråningen (gradient)
Bruk det oppgitte punktet
Ovennevnte har kun 1 ukjent, så det er løsbart.
En linje går gjennom (8, 1) og (6, 4). En annen linje går gjennom (3, 5). Hva er et annet poeng at den andre linjen kan passere gjennom hvis den er parallell med første linjen?
(1,7) Så må vi først finne retningsvektoren mellom (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi vet at en vektorkvasjon består av en posisjonsvektor og en retningsvektor. Vi vet at (3,5) er en posisjon på vektorkvasjonen, slik at vi kan bruke det som vår posisjonvektor og vi vet at det er parallell den andre linjen, slik at vi kan bruke den retningsvektoren (x, y) = (3, 4) + s (-2,3) For å finne et annet punkt på linjen kan du bare erstatte et tall i s bortsett fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er et annet punkt.
Hva er ligningen av linjen som går gjennom punktet (5,9) og er parallell med linjen y = 3x + 7?
Jeg fant: y = 3x-6 Du kan bruke forholdet: y-y_0 = m (x-x_0) Hvor: m er skråningen x_0, y_0 er koordinatene til punktet ditt: I ditt tilfelle må parallelllinjens helling være den samme som den av din angitte linje som er: m = 3 (koeffisienten x). Så får du: y-9 = 3 (x-5) y = 3x-15 + 9 y = 3x-6 Grafisk: (rød linje er parallell)
Skriv punkt-skråningsformen til ligningen med den angitte hellingen som går gjennom det angitte punktet. A.) linjen med helling -4 passerer gjennom (5,4). og også B.) linjen med helling 2 passerer gjennom (-1, -2). Vennligst hjelp, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "likningen av en linje i" farge (blå) "punkt-skråform" er. • farge (hvit) (x) y-y_1 = m (x-x_1) "hvor m er skråningen og" (x_1, y_1) "et punkt på linjen" (A) "gitt" m = -4 "og "(x_1, y_1) = (5,4)" erstatter disse verdiene i ligningen gir "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråform "(B)" gitt "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "